Getting Started with InterBase

Disclaimer

Borland International, Inc. (henceforth, Borland) reserves the right to make changes
in specifications and other information contained in this publication without prior
notice. The reader should, in all cases, consult Borland to determine whether or not any
such changes have been made.

The terms and conditions governing the licensing of InterBase software consist solely
of those set forth in the written contracts between Borland and its customers. No
representation or other affirmation of fact contained in this publication including, but
not limited to, statements regarding capacity, response-time performance, suitability
for use, or performance of products described herein shall be deemed to be a warranty
by Borland for any purpose, or give rise to any liability by Borland whatsoever.

In no event shall Borland be liable for any incidental, indirect, special, or consequential
damages whatsoever (including but not limited to lost profits) arising out of or relating
to this publication or the information contained in it, even if Borland has been advised,
knew, or should have known of the possibility of such damages.

The software programs described in this document are confidential information and
proprietary products of Borland.

Restricted Rights Legend. Use, duplication, or disclosure by the U.S. Government is
subject to restrictions as set forth in subdivision (b) (3) (ii) of the Rights in Technical
Data and Computer Software clause at 52.227-7013.

© Copyright 1993 by Borland International, Inc. All Rights Reserved. InterBase, GDML,
and Pictor are trademarks of Borland International, Inc. All other trademarks are the
property of their respective owners.

Corporate Headquarters: Borland International Inc., 100 Borland Way, P. O. Box
660001, Scotts Valley, CA 95067-0001, (408) 438-5300. Offices in: Australia, Belgium,
Canada, Denmark, France, Germany, Hong Kong, Italy, Japan, Korea, Latin America,
Malaysia, Netherlands, New Zealand, Singapore, Spain, Sweden, Taiwan, and United
Kingdom.

Software Version: V3.0

Current Printing: October 1993
Documentation Version: v3.0.1

Reprint note

This documentation is a reprint of InterBase V3.0 documentation. It
contains most of the information from InterBase Previous Versions
Documentation Corrections and InterBase Version 3.2 Documentation
Corrections and a new index. For information on features added since
InterBase Version V3.0, consult the appropriate release notes.

Table of Contents

Preface
Who Should Read this Book ix
UsingthisBook ix
Text Conventions. it .. X
InterBase Documentation. Xi

1 Understanding InterBase

OVEIVIEW . ittt e 1-1
On-Line Complex Processing 1-1
Time-Critical, Event-Driven Transactions 1-2
Object Handling Under Relational Control 1-4
Processing Transparency in Multi-Vendor Networks 1-5
Applications of InterBase OLCP. 1-6
InterBase Components 1-7
Data Manipulation Languages 1-8
Choosing Between SQLand GDML 1-8
InterBase Utilities 1-10
Whereto GoFromHere 1-11

2 Designing and Prototyping Applications

OVEIVIEW . .ottt e e 2-1
Relational Database Terms and Concepts.................. 2-2
Joining Relations 2-3
Using QUi ... oo 2-4
QU Prompts 2-4
Correcting Mistakes 2-4
Accessing the Sample Database 2-5
Whereto GoFromHere 2-6

3 Defining a Database

Vi

OVeIVIEW . . oottt e e e 3-1
Interfaces YouCanUse 3-2
DataDictionary 3-3

Starting the Definition Process 3-3

Defining Fields i 3-4

Defining Relations 3-5

Defining Views i 3-6

Defining Indexes.t 3-7

Defining Securityc i 3-8

Where to Go Fromhere 3-9

Developing Applications

OVEIVIEW . . o\t i ettt et e e et e e 4-1
The InterBase Transaction Environment.................. 4-1
Transaction Models 4-2
Multiple-Database Access 4-3
Other Transaction Features 4-3
RetrievingData i, 4-4
Using an SQL Select Statement 4-4
Usinga GDML For Loop it 4-5
StoringData i 4-6
Using an SQL Insert statement 4-7
Using a GDML Store Statement 4-7
ModifyingData..........o 4-8
Using the SQL Update Statement 4-8
Using the GDML Modify Statement 4-9
ErasingData......... i 4-11
Using the SQL Delete Statement 4-11
Using the GDML Erase Statement 4-11
Preprocessing Programs. o oL 4-13
Where To GoFrom Here 4-14

Advanced Features

OVEIVIEW . . o ottt et e e ettt e 5-1
Casting . ..o vt 5-2
Subqueries 5-2
Recursive Queries.ttt 5-3
User-Defined Functions 5-3

Advantages of User-Defined Functions 5-4

Defining User-Defined Functions 5-4

Programming with User-Defined Functions 5-5
Blobs. . ..o 5-5
BlobSubtypes ... 5-6
Advantagesof Blobs 5-6
Programming with Blobs 5-6
BlobFilters 5-7
Advantages of Blob Filters 5-7
Defining Blob Filters 5-8
Programming with Blob Filters 5-8
Arrays. ... 5-9
Advantages of Arrays i 5-11
Programming with Arrays 5-11
TrigEerS « oot 5-11
Event Alerters i 5-12
Advantages of Event Alerters 5-13
Defining Event Alerters 5-13
Programming with Event Alerters 5-14
Whereto GoFromHere 5-15

Finishing Touches

OVEIVIEW . ottt ettt e et e e 6-1
Forms e 6-1
Report Writer. 6-4
Options and Interfaces 6-6
Pictor 6-6
ConteSSaA . . ittt e 6-7
Third-Party Interfaces 6-7
Whereto GoFromHere 6-9

Database Administration

L0 Y i =) 7-1
System Utilities. i 7-1
Recovery Tools. i i 7-2
Automatic Recovery 7-2
After-Image Journaling 7-2
Disk Shadowing 7-3
WheretoGoFromHere 7-4

vii

Supported Systems
Specifications

Language Features

o a w »

Interbase Offices

Index

viii

Preface

Who Should Read this Book

You should read this book before you read any other books in the
InterBase documentation set. This book provides a:

¢ Conceptual overview of InterBase
e Description of each of InterBase’s features
e Roadmap to InterBase’s documentation set

This book assumes some database knowledge, but no knowledge about
InterBase.

Using this Book
This book contains the following chapters and appendixes:

Chapter 1 Introduces InterBase, the system components,
and the InterBase transaction model.

Chapter 2 Explains relational database concepts and
terms and qli, the query and update language
interpreter, and how to access the sample data-
base.

Chapter 3 Describes defining a database.

Text Conventions

Chapter 4 Explains developing applications using Inter-
Base.

Chapter 5 Describes InterBase’s advanced features.

Chapter 6 Describes the forms screen designer and the re-

port writer. It also provides information on
VAR and third-party products.

Chapter 7 Describes InterBase system utilities, recovery
mechanisms, and system configuration op-
tions.

Appendix A Lists supported platforms.

Appendix B Lists product specifications.

Appendix C Lists which InterBase features are supported
in SQL and GDML.

Text Conventions

This book uses the following text conventions:

Indicates whether the section contains infor-
GDML mation on an SQL or a GDML topic or both.
boldface Indicates a command, option, statement, or

utility. For example:

¢ Use the commit command to save your
changes.

e Use gdef to extract a data definition.

italic Indicates chapter and manual titles; identifies
file-names and pathnames. Also used for em-
phasis, or to introduce new terms. For example:

¢ See the introduction to SQL in the Pro-
grammer’s Guide.

e /usr/interbase/lock_header

InterBase Documentation

* Subscripts in RSE references must be
closed by parentheses and separated by
commas.

* (C permits only zero-based array subscript
references.

courier font Indicates what you type, example code, and
system output:

e $run sys$system:iscinstall
¢ add field population_1950 long
UPPER CASE Indicates relation names and field names:
¢ Secure the RDB$FILES system relation.

* Define a missing value of X for the LATI-
TUDE_COMPASS field.

Examples

The Example section provides examples you can try in qli. These
examples provide you with a basic understanding of the concepts
presented in this book.

InterBase Documentation

The InterBase Version 3.0 documentation set contains the following
books:

Database Operations (INT0032WW2178D) describes how to maintain
InterBase databases.

Data Definition Guide (INT0032WW2178F) describes how to create
and modify InterBase databases.

DDL Reference INT0032WW2178E) describes the function and syntax
for the data definition language.

‘DSQL Programmer’s Guide (INT0032WW2179C) describes how to pro-
gram with dynamic SQL (DSQL), with which you generate SQL
statements for dynamically generated queries.

Xi

InterBase Documentation

Forms Guide (INT0032WW2178A) describes how to create forms using
the InterBase forms editor, fred, and how to use forms in qgli,
GDML applications.

Getting Started with InterBase (INT0032WW2179A), this book, pro-
vides an overview of InterBase components and interfaces.

Programmer’s Guide (INT0032WW2178I), describes how to program
with GDML, a relational data manipulation language, and with
SQL, an industry standard language.

Programmer’s Reference (INT0032WW2178H) describes the function
and syntax for GDML and SQL.

Qli Guide (INT0032WW2178C) describes how to use qli, the InterBase
query and update language interpreter. Qli allows you to read to
and write from databases using interactive GDML or SQL state-
ments.

Qli Reference (INT0032WW2178B) describes the function and syntax
for the data definition, SQL, and GDML you can use in qli.

Sample Programs (INT0032WW2178G) contains sample programs
that show the use of InterBase features.

Master Index (INT0032WW2179B) contains index entries for the entire
InterBase Version 3.0 documentation set.

Xii

Understanding InterBase

Overview

InterBase is a relational database management system (RDBMS)
designed to reduce the difficulty, expense, and risk of creating complex
applications. InterBase’s complete implementation of SQL supports all
relational concepts and structures. To allow the creation of applications
that common SQL engines cannot deliver, InterBase provides features
to make the database system a powerful ally in application
development.

On-Line Complex Processing

The applications at which InterBase excels are those that manage:

¢ Time-critical transactions whose contents and sequence are
unpredictable and which must interact with other time-critical

processes.

¢ Objects, both structured and unstructured, such as drawings,
arrays, large documents, and digitized data that must be
controlled and shared like traditional data.

¢ Data distributed in a heterogeneous multi-vendor network with
minimal cost in system design, operation, and administration.

Understanding InterBase 1-1

On-Line Complex Processing

These characteristics define an On-Line Complex Processing (OLCP)
application. InterBase provides a suite of features and facilities for the
application designer who must deliver a full-scale OLCP application.

Time-Critical, Event-Driven Transactions

On-Line Complex Processing applications often must respond to an
unpredictable variety of requests and transactions in a timely way.
InterBase’s features provide a uniquely responsive environment.

Transaction Management: At InterBase’s core is a multi-generational
record architecture that produces optimal throughput for multi-user,
high-contention applications.

Traditional locking schemes, used by other database systems, force
processes to wait in line to modify or read data that another process is
using. The delays and overhead introduced by data locking are
unacceptable in time-critical OLCP applications.

InterBase’s multi-generational records provide the data consistency of
record locks without their cost. Furthermore, the InterBase
architecture eliminates conflicts between read and write transactions,
so data analysis has no impact on the throughput of on-line transaction
processing.

In addition, multi-generational records allow you to back up databases
and to change the metadata while the database is on line with other
applications—with no degradation in performance.

Event management: Time-critical applications frequently need to
respond to unpredictable events. Rather than leave the management of
these events up to the application designer, InterBase provides event
alerters.

In brief, event alerters are a way of notifying your application
immediately when a predefined data change (or other event) has
occurred. Unlike traditional programmatic event poll/wait loops,
InterBase event alerters use a simple, no-overhead wait mechanism to
listen for events. The figures below illustrate the difference between
polling and event alerters.

1-2 Understanding InterBase

On-Line Complex Processing

Polling for Database Change InterBase Event Alerters
R S Ty
Application %‘:’i Database Application Database
G “—’
Response) Response)

Because event alerters work remotely in a heterogeneous network,
your program need not solve the problems of signaling remote
machines of a different type.

Dynamic Integrity Control: Trigger procedures, or triggers ensure that
your data maintains its integrity regardless of the unpredictable ways
in which it is accessed. Triggers govern what happens to the database
when data items are changed, added, or removed. For example, a
trigger might forbid adding a payroll record for an employee not listed
in the personnel records.

InterBase triggers provide a complete and robust environment for
managing data rules. You can specify the sequence in which triggers
should operate, including whether they should operate before or after
the database update with which they are associated. Triggers
“cascade”™—that is, a trigger that updates a database causes any
associated triggers to fire, which may activate additional triggers, and
SO on.

Recovery: InterBase provides timely recovery from system
malfunctions in the following ways:

o InterBase’s multi-generational architecture ensures that a
consistent database is instantly available at system restart,
regardless of the number of transactions in progress at the time
of failure.

e Journaling, when activated, keeps a log of all transactions, to

allow you to return the database to any previous uncorrupted
state.

Understanding InterBase 1-3

On-Line Complex Processing

o Shadowing, when activated, creates a duplicate database on
another hardware node, so that processing can resume instantly
when the original node fails.

Object Handling Under Relational Control

Applications involving complex objects—digitized images, binary data,
or lengthy text—have far outstripped the capacity of most database
systems to handle the data. InterBase’s advanced datatypes,
illustrated in the figure below, permit you to store anything you can
digitize—right in the database with other data, under full security,
transaction, and recovery control.

W o 3
M .. :'n‘ A

Sounds]
]] 100101000
101001001
Documents —
Arrays Binary

In addition, InterBase manages functions centrally, in the database
itself, for common access by multiple applications without redundancy.

Arrays: Interbase’s array datatype lets you store multi-dimensional
arrays in a single field. Arrays are particularly useful in scientific and
analytical applications, such as data acquisition, component testing,
and time-series analysis.

Blobs: Interbase’s blob datatype stores digital data of any type and any
length. Typically blobs are used for images, digitized voice, word-
processing documents, and binary executable files.

You can instruct InterBase to handle blobs more intelligently through
the use of blob filters—code that translates the stored blob data into a
another format (or subtype) more useful to a particular application or
computer hardware. InterBase stores blob filters centrally, in the
database to which they pertain, so that coding and maintenance is kept
to a minimum.

1-4 Understanding InterBase

On-Line Complex Processing

<
-

=

User-Defined Functions: To perform non-standard calculations on
data, you can register user-defined functions with the database. Once
defined, these functions deliver the correct results to any workstation
on the InterBase network, regardless of hardware type.

Computed Fields: InterBase’s computed fields are fields whose value
is not stored in the database, but is calculated at runtime from other
record values. A computed field can be as simple as concatenating first,
middle, and last names to produce a full-name field, or, with the use of
user-defined functions, as complex as great-circle distance from
Greenwich.

Processing Transparency in Multi-Vendor
Networks

InterBase is the only RDBMS to take distributed database to its logical
conclusion. Where client-server architectures allow you to distribute
only the client processing, InterBase’s peer-to-peer processing lets you
distribute clients, servers and data.

In the peer-to-peer architecture, data can reside on any or all nodes in
a network, and be accessed by any other node. Because of this
distribution, peer-to-peer processing is less susceptible to bottlenecks
than single-server architecture, and eliminates the server as a single
point of failure.

Of course, InterBase provides client-server architecture (multi-client
with single-server) where application or organizational structure
require. The following figure illustrates how peer-to-peer architecture
is a logical extension of the client-server model.

Understanding InterBase 1-5

Applications of InterBase OLCP

Client-Server: InterBase Peer-to-Peer: Multi-
Single Database Server, Multiple Client Multi-Server
Clients

InterBase transactions span multiple databases and nodes, allowing
you to read and update records on diverse hardware platforms with
complete integrity. The key to multi-node updating is InterBase’s
automatic two-phase commit.

Whenever you call for a transaction that spans more than one network
node, InterBase senses the need for a two-phase commit and puts it
into action. The first phase of the commit confirms that participating
databases are ready to commit the transaction; the second commits it.

Applications of InterBase OLCP

Complex applications in distributed environments are difficult, costly,
or even impossible to implement with conventional OLTP-style
database management systems. InterBase is designed to streamline
the implementation of complex distributed applications, so your
application development effort can focus on supporting your business.

¢ A financial trading application can use event alerters to notify
interested traders that a stock has changed value—regardless of
the type of workstation at their desk. Data arrays capture price
changes in real time; at the same time, traders can analyze data
and order trades on the same database without degrading
throughput.

¢ A commercial software developer uses InterBase’s blob datatype
to manage version control on software modules. Blob filters

1-6 Understanding InterBase

InterBase Components

convert centrally stored source code into the appropriate format
for developers on different operating systems, then reverse the
procedure when the module returns. When a module is checked
in, a user-defined function calculates the changes made and
stores a difference record in another blob.

o A process control application relies on InterBase’s high-
throughput architecture to monitor semiconductor furnace
conditions in real time, and allows corrective actions to be taken
from either local or remote nodes transparently.

e Other organizations use InterBase to:

- Manage voice and data networks.

- Analyze data acquired in real time.

- Manage CAD data and version control.

InterBase Components

InterBase utilities serve the development phases of an OLCP
application by:

¢ Defining the database structures which underlie your
application—the application metadata.

¢ Developing the application itself, coding in a combination of
conventional third-generation languages, ANSI SQL, and
InterBase’s proprietary data manipulation language, GDML.

¢ Organizing the end-user presentation and use of the program.

¢ Administering databases and servers, and restoring damaged or
lost data.

In addition to the application tools, InterBase supplies an interactive
language interface, called gli, that provides access to most of
InterBase’s features. Using qli, you can explore the system, try out
functionality, and prototype application components—without the
impediment of the compile-run-debug cycle.

Understanding InterBase 1-7

InterBase Components

The following figure illustrates the relationship of InterBase’s
components to the application development process.

Database

Application Application ata _
Data Development Administration
Structures « Servers
« SQL « Utilities
- SQL DDL

« DSQL
+ GDML DDL + GDML

Application
Presentation
* Forms

* Reports

Interactive Subset:
qgli

Data Manipulation Languages

InterBase offers you a choice of two data manipulation languages
(DMLs):

e ANSI level II SQL for compliance with standards and existing
programming techniques.

e GDML, a proprietary languages that accesses InterBase’s
advanced features not addressed by the ANSI SQL standard.
Rather than extend the SQL standard with non-standard
additions, InterBase provides this second language that covers
both standard and advanced features.

Choosing Between SQL and GDML

Fortunately, you can combine SQL and GDML in any application. If
you already know SQL, you can use it for normal data manipulation
statements and still use GDML when you need special capabilities.

1-8 Understanding InterBase

InterBase Components

SQL offers you the following advantages:

o Transportability: Because it is a standard, SQL code can be
imported from non-InterBase applications with little or no
change.

e Training: SQL is widely known and understood, which keeps
training to a minimum and makes ongoing maintenance of your
application somewhat simpler.

GDML offers these advantages:

o High-Performance Features: Many advanced features of
InterBase are not supported by SQL—or any other database
language. Rather than extending the SQL standard, InterBase
provides GDML to access OLCP features such as blobs, arrays,
and event alerters.

e Ease of Use: Often, GDML syntax is easier to use than SQL. The
for-loop construct, for instance, eliminates the need for
cumbersome SQL cursors to retrieve multiple records.

o Rich Semantics and Environmental Control: GDML data
management offers you more control over the program’s
environment than SQL does. For example, your organization
may prefer the GDML approach to database security, or you may
need the level of transaction management that GDML provides.

e Automatic Error Handling: Unlike SQL, every GDML statement

detects and responds to errors. This avoids or detects many
common programming pitfalls.

Understanding InterBase 1-9

InterBase Components

The following table shows which aspects of the InterBase RDBMS can
be used from which DML. A more complete version of this table is found

in Appendix C.

Feature Database Language

Data Definition SsQL
Data Manipulation saL
Interface to 3GL Programs
Security
Interactive Use (qli) saL
Reports GDML
Blobs & Blob Filters GDML

Arrays

Event Alerters

OO
=2 (R=]
SH=
= G

Triggers

=

User-Defined Functions

[2] |E2l
=2 =
==
=

Forms

()
o
=
[

InterBase Utilities

When you create an application in InterBase, you use several different
utilities, each of which is designed for a specific task:

o Gdef is a data definition processor which creates a database
from a data definition file. Gdef can define relations, fields,
views, security, and trigger definitions. For simple data
definitions and modifications, gdef can be used interactively.

o Gpre is InterBase’s program precompiler, which you use to
process DML statements inside 3GL programs.

Understanding InterBase

Where to Go From Here

¢ Fred is a menu-driven tool for designing screen forms. Because
fred is a database utility, you can use database fields and tables
in your forms directly.

¢ Qli is InterBase’s query and update interpreter. Qli is an ideal
way to learn and test most of the system’s features interactively.

¢ Gbak, gfix, grst, and gcsu are utilities that control backup,
configuration, and restoration of databases.

Optional utilities and interfaces to other commercial software products
are also available to make your application more powerful and your
development process more efficient.

Where to Go From Here

The remaining chapters of this book expand on the InterBase features
and concepts introduced here. To learn more about the listed InterBase
features, read the chapter indicated in the following table.

To learn more about Refer to

Application Development Chapter 4, Developing Applications
Arrays Chapter 5, Advanced Programming
Blobs Chapter 3, Defining a Database
Blob Filters Chapter 5, Advanced Programming
Computed Fields Chapter 3, Defining a Database
Database Definition Chapter 3, Defining a Database
Event Alerters Chapter 5, Advanced Programming
Forms Chapter 6, Finishing Touches
GDML DDL Chapter 3, Defining a Database
GDML DML Chapter 4, Developing Applications
Options & Interfaces Chapter 6, Finishing Touches

Understanding InterBase 1-11

Where to Go From Here

To learn more about Refer to

QLl Chapter 2, Designing & Prototyping
Report Writer Chapter 6, Finishing Touches
Servers Chapter 7, Database Administration
SQL DDL Chapter 3, Defining a Database
SQL DML Chapter 4, Developing Applications
Triggers Chapter 3, Defining a Database
Transactions Chapter 4, Developing Applications
Two-Phase Commit Chapter 4, Developing Applications
User-Defined Functions Chapter 5, Advanced Programming

All features are described in detail in the InterBase documentation set.

1-12 Understanding InterBase

Designing and Prototyping
Applications

Overview

You can design and prototype applications in qli. Qli is InterBase’s
query and update language interpreter. You can use gli to:

¢ Display, store, and update data and prototype these operations
for inclusion in application programs.

¢ Display or generate reports of data.
¢ Display, store, and update data using forms.

¢ Define databases, relations, fields, indexes, views, and
procedures.

Before you design and prototype your database application, it is

important to understand some of the basic concepts of relational
database theory.

Designing and Prototyping Applications 2-1

Relational Database Terms and Concepts

Relational Database Terms and Concepts

A relational database is data perceived by the user as a collection of
relations. The diagram below shows an example of a relation called
EMPLOYEES.

Employees
Name Address Date Badge_No.
Lisa | 2Main St | 3/13/53 57
Hal 5 Oak Dr 12/2/42 3
Leslie | 123 EIm St| 5/20/61 17
Don |35BirdLa| 4/4/57 39

(Record ' 1 Field '

The EMPLOYEES relation contains records. A record contains fields,
and each field in a record contains data. The data in a field can be any
of the following datatypes:

¢ Binary, a short or longword integer with optional decimal scale

¢ Blob, a basic large object that holds documents, graphics,
images, or any other large unstructured data

e Character, varying or fixed text
e Date, date/time

¢ Float, a single precision 32-bit or a double precision 64-bit
datatype

2-2 Designing and Prototyping Applications

Relational Database Terms and Concepts

¢ Multi-dimensional array, a subdivided database field used to
store a large amount of related data elements in a structured
fashion

When identifying database elementAs, you can use the following
InterBase, SQL, or academic terms.

InterBase SQL Academic
m Table Relation

Record Row Tuple

Field Column Attribute

This book uses the InterBase terms to identify database elements.

Joining Relations

The key to a relational database is the ability to join relations through
common data in fields. This is called a join.

The following diagram joins the NAME field from EMPLOYEES
relation to the NAME field from the DEPENDENTS relation.

Employees Dependents
Name Address Date Badge_No Name Dependent Date
Lisa | 2 Main St| 3/13/53 57 Lisa Ralph 2/23/56
Hal | 50akDr| 12/2/42 3 Lisa | Eddie | 3/09/87
Leslie |123 EIm St| 5/20/61 17 Hal | Veronica | 9/27/76
Don |35BirdLa| 4/4/57 39 Don [Don,Jr. | 3/09/90

Designing and Prototyping Applications 2-3

Using Qli

You can join relations in the following ways:

e One record to one record
e One record to many records

¢ Many records to many records

Using Qli

Qli lets you interactively:
o Access databases and InterBase features
¢ Prototype applications

It is also the simplest way to learn InterBase.

Qli is used in many of the examples throughout this book. The
following sections discuss qli’s prompts and how to correct mistakes in
qli.

Qli Prompts

Qli has two prompts, QLI> and CON>. The QLI> prompt indicates the
system is ready for a new command. The CON> prompt indicates a
command has not been completed and you may continue.

Note

Some of the examples presented in this book use a
hyphen (-) to indicate that a command continues on
the next line.

Correcting Mistakes

If you mistype a command in gqli, type the word edit and qli makes your
previously typed command available with the default operating system
editor. Use the editor’s commands to correct the mistake, exit from the
editor, and qli executes the corrected command. If you do not want to
execute any changes, quit from the editor.

2-4 Designing and Prototyping Applications

Accessing the Sample Database

If you want to experiment without damaging or permanently changing
data in a database, you can use the rollback command. Rolling back
data changes undoes all updates made to the database since the last
commit.

Accessing the Sample Database

The examples used in this manual refer to data stored in the InterBase
sample database, atlas.gdb.

If you plan to try the examples presented in the Example sections, use
the atlas.gdb database. Before running the examples, make your own
copy of the database in a local directory. This way you can make
changes to the database without affecting the original database.

The following table shows how to copy the sample atlas.gdb database
file to your current directory:

o/s Command

Apollo Domain/IX % cp /interbase/examples/atlas.gdb .

UNIX % cp /usr/interbase/examples/atlas.gdb .

VMS $ copy interbase$ivp:atlas.gdb atlas.gdb *.*
Note

If you are on a NF'S mounted file system on a Sun,
the UNIX copy example may not work. Instead, use
the following command:

% cp /usr/interbase/examples/atlas.gdb atlas.gdb

Designing and Prototyping Applications 2-5

Where to Go From Here

Where to Go From Here

For more information on using qli, use the table below to direct you to
the appropriate book in the InterBase documentation set.

To learn more

about Refer to the chapter on | In the
Accessing qli Introduction to qli Qli Guide

Using qli Introduction to qli Qli Guide
Accessing the Introduction to qli Qli Guide

sample database

Relational concepts | Designing a database Data Definition Guide

2-6

Designing and Prototyping Applications

Defining a Database

Overview

GDML
Before you begin to develop your application, you need to understand

the design of the database or databases your application will use. In
some cases, you may need to define the database or databases from
scratch.

You define an InterBase database by naming the primary database file
and defining the appropriate database components.

You can define the following basic database components:
¢ The database itself
¢ Fields, to represent your data
¢ Relations, to group your data

¢ Indexes, to improve retrieval performance or enforce a field’s
uniqueness

e Views, to display a limited subset of fields or records, or to
display data from a combination of relations

o Security, to prevent unauthorized access to a field, relation, or
database

Defining a Database 3-1

GDML

Overview

You can also define the following advanced database components,
which are described in Chapter 5, Advanced Features:

¢ User-defined functions, to perform arithmetic calculations

e Blob filters, to convert data from one blob subtype to another

¢ Triggers, to enforce data integrity and define events

¢ Event Alerters, to notify programs of changes to the database

The components described above, which structure the database, are

called metadata.

Rather than use multiple files, InterBase keeps all database
components in a single file. This is an advantage when you are, for
example, backing up, transporting, or maintaining a database.

Interfaces You Can Use

You can use either SQL or GDML to define database objects.

The following table lists the database objects that each interface can

define.

Component

SQL

GDML

Database

Field (local)

Field (global)

Field (computed)

Relation

Index

View

Security

NN NS

NSNS SN SNNT S

3-2

Defining a Database

Starting the Definition Process

Component SaL GDML
User-Defined Functions (Chap. 5) v
Blob Filter (Chap. 5) v
Trigger (Chap. 5) v
Event Alerter (Chap. 5) v

Data Dictionary

Like all relational database management systems, InterBase stores

information about metadata in a data dictionary. The dictionary
provides a central storage area for the metadata associated with a

database.

InterBase creates its data dictionary by using system relations.
Information is stored in system relations automatically when you
define database components using the SQL and GDML interfaces.

You can see the system relations by using qli show commands. If
you're an advanced programmer, you may sometimes want to access

the system relations directly.

Starting the Definition Process

You start the data definition process by naming the database you want
to define. You can use qli, gdef, or embedded SQL to name a new

database.

To name a database using the SQL variant of gli,

QLI> create database my_atlas.gdb

To name a database using the GDML variant of gli, type:

QLI> define database my_atlas.gdb

Defining a Database

type:

3-3

GDML

SQL

GDML

Defining Fields

Defining Fields

You define fields by using gli, gdef, embedded SQL, or dynamic SQL.
You can define:

o Local fields using the SQL variant of qli, embedded SQL, or
DSQL. You always define a local field within the context of a
relation.

e Global fields using the GDML variant of qli or gdef. A global
field is a description of a data element that is independent of the

relation in which it is used. You can include a global field in any
relation.

ANSI SQL does not support the concept of a global field.

e Computed fields using gdef. A computed field is a virtual field.
InterBase never stores data in such fields. Instead, it uses the
formula to retrieve the requested data.

Computed fields are not globally available, because their formula
is meaningful only within the context of the relations in which

they are defined.

When you define a field, you must specify its datatype. If the field is a
character field, you must also specify its length.

For fields defined using GDML, you can optionally specify these other
field attributes:

e Vulid if, which specifies validation criteria for a field
e Edit string, which specifies a display format for a field in qli
e Query header, which specifies a column header for a qli display

e Query name, which specifies an alternate field name for use in
qli

3-4 Defining a Database

Defining Relations

To define a local field called STREET using the SQL variant of qli, SQL
type:

QLI> create table tourism -
CON> (street varchar(25));

This statement creates a local field called STREET of datatype varying
that’s a maximum of 25 characters long. It creates this field within the
context of the TOURISM relation.

To define a global field called STREET using the GDML variant of qli,
type:

QLI> define field street varying [25]
This creates a global field called STREET of datatype varying that’s a

maximum of 25 characters long. This field exists independently of a
relation.

Defining Relations

You define relations by using qli, gdef, embedded SQL, or dynamic GDML

SQL.
For relations defined with the:

¢ SQL variant of qli, embedded SQL and DSQL, you must define
the relation’s fields when you define the relation.
e GDML variant of qli or gdef, you can:

- Reference existing global fields. When you reference an
existing field, you can use the based on clause to give it a
name specific to the relation being defined.

- Define new global fields.
- Define computed fields.

To define a relation called PARKS using the SQL variant of qli, type: SQL

Defining a Database 3-5

SQL
GDML

Defining Views

QLI> create table parks -
CON> (name varchar (20),
CON> type char(l),

CON> city wvarchar(20),
CON> state varchar(4));

To define this relation using the GDML variant of qli, type:

QLI> define relation parks
CON> name varying([20],
CON> type char[1l],

CON> city,

CON> state;

This definition assumes the CITY and STATE field have already been
defined to the database.

Defining Views

Views can be a:

e Vertical subset of fields from a single relation. This type of view
limits the fields that are displayed.

¢ Horizontal subset of records from a single relation. This type of
view limits the records that are displayed.

¢ Combined vertical and horizontal subset of records from a single
relation. This type of view limits both the fields and records that
are displayed.

¢ Subset of records from many relations. This type of view usually
performs a join operation.

You define a view by using gdef, embedded SQL, or dynamic SQL.
When you define a view, you can use a context variable (GDML) or alias
(SQL) to provide name recognition and distinguish one relation from
another. In the examples below, the context variable is the letter “c”.

Suppose you want to define a view called MAP_CITIES that limits the
fields returned to the program.

3-6 Defining a Database

To define this view using gdef, type:

GDEF> define view map_cities
of ¢ in cities

CON>
CON>
CON>
CON>
CON>

C

C
C
C

.city,
.state,
.latitude,
.longitude;

Defining Indexes

Now, suppose you want to define a view that joins the CITIES and

STATES relations on the STATE field.
To define this view using gdef, type:
GDEF> define view city_states

of s in states
cross c 1in cities over state

CON>
CON>
CON>
CON>
CON>
CON>
CON>

C

S
C
C.
C

.city,
.state_name,
.altitude,
latitude,
.longitude;

Defining Indexes

Indexes improve performance for retrieval operations and can be used

SQL
GDML

to enforce uniqueness for data values. As a general rule, you should
define an index for:

¢ A relation’s primary key.

o A relation’s foreign keys.

¢ Non-key field that are accessed frequently for retrieval purposes.

¢ Non-key fields that are unique.

You define an index by using gdef, qli, embedded SQL, or dynamic

SQL.

Defining a Database

3-7

SQL

SQL
GDML

SQL

Defining Security
To define a unique index for the STATE field in the STATES relation
using the SQL variant of qli, type:

QLI> create unique index states_idx2
CON> on states (state)

To define the same index using the GDML variant of qli, type:
QLI> define index states_idxl for states

CON> unique
CON> state

Defining Security
InterBase provides two security schemes. The SQL security scheme
(grant/revoke) automatically limits access to relations and fields. It
then lets you grant and revoke access to these fields.
The GDML security scheme lets you limit access to:

e The database itself

¢ Relations

o Views

¢ Fields in a relation or view
The GDML security scheme uses security classes to define classes of
users and access rights. You can assign a security class to any of the

database objects listed above.

Both SQL security and GDML security are enforced across all
interfaces and platforms.

To grant access to the STATES relation using the SQL security scheme,
type the following in qli:

QLI> grant select on states to juliec,
CON> dana;

3-8 Defining a Database

To secure the STATES relation from unauthorized access by using

GDML security, type the following in gdef:

Where to Go From here

GDEF> modify database ‘atlas.gdb’;
GDEF> modify relation states
CON> security_class my_security_list;

This example assumes that the security_class MY_SECURITY_LIST

already exists.

Where to Go From here

For more information on defining basic database components using the
SQL interface, use the table below to direct you to the appropriate book
in the InterBase documentation set.

To define Refer to the chapter on | In the

Empty databases Defining metadata Programmer’s
with SQL Guide
Defining metadata Qli Guide

Local fields Defining metadata Programmer’s
with SQL Guide
Defining metadata Qli Guide

Relations Defining metadata Data Definition
with SQL Guide
Defining metadata Qli Guide

Indexes Defining metadata Programmer’s
with SQL Guide
Defining metadata Qli Guide

Views Defining metadata Programmer’s
with SQL Guide

Defining a Database

3-9

SQL

Where to Go From here

To define Refer to the chapter on | In the

Security Defining metadata Programmer’s
with SQL Guide
Defining metadata Qli Guide

GDML For more information on defining basic database components using the
GDML interface, use the table below to direct you to the appropriate

book in the InterBase documentation set:

To define Refer to the chapter on

In the

Empty Databases Creating a database

Data Definition
Guide

Defining metadata

QIi Guide

Global fields Defining fields

Data Definition
Guide

Defining metadata

Qli Guide

Computed fields Defining relations Data Definition
Guide
Relations Defining relations Data Definition
Guide
Defining metadata Qli Guide

Indexes Defining views and Data Definition
indexes Guide
Defining metadata Qli Guide

Views Defining views and Data Definition
indexes Guide
Security Securing Data Data Definition
Guide
3-10 Defining a Database

Developing Applications

Overview

Developing InterBase application programs involves: GDL

¢ Understanding the InterBase transaction environment

¢ Using appropriate data manipulation language (DML)
statements in your program

¢ Knowing how to preprocess your program

You can develop applications using either SQL, GDML, or both.

The InterBase Transaction Environment

In any programming environment, a related set of changes should be GDNL

made in their entirety or not at all. If your program terminates before
it finishes performing the complete set of related changes to a database,
you would want the database restored—or rolled back—to the state it
was in before the set of changes started.

InterBase provides this capability through transactions. A transaction
is a bounded set of statements that:

e Succeed or fail as a group

Developing Applications 4-1

GDML

SQL
GDML

The InterBase Transaction Environment

e Are not corrupted by changes made by other processes

e Maintain a constant image of the metadata

Transaction Models

To give your application greater flexibility and help it achieve the
greatest possible throughput, InterBase provides two transaction
models, the:

o Consistency model, which is available through embedded GDML
programs

e Concurrency model, which is the default for embedded GDML
and embedded SQL programs

Concurrency Model: For higher throughput in many OLCP
applications, you can use InterBase’s concurrency model. This model
provides complete consistency for read-only transactions without
waiting for updates or risking deadlocks. It also provides high
consistency and efficient conflict resolution for read-write transactions.

The concurrency model eliminates the bottleneck of data locking by
creating multi-generational records for each active transaction. Each
transaction is free to read data and make changes. InterBase monitors
the transactions for potential conflicts and supplies appropriate
messages or resolutions.

A major advantage to the concurrency model is a transaction always
reads a stable view of the database, even though changes may occur
while the read takes place.

An additional advantage is the multi-generational records take up
little additional space since InterBase stores difference records only.
Also, InterBase deletes records when they are no longer needed.

Consistency Model: The transaction environment found in most
traditional database management systems uses a consistency model.
This model locks records or relations whenever someone reads or
writes to them. The InterBase consistency model locks relations.

4-2 Developing Applications

The InterBase Transaction Environment

The consistency model is useful for special cases in which there is a
high risk that simultaneous updates might damage relationships
between records.

However, this model is less useful for an environment containing a
mixture of update and read-only transactions. Within the consistency
model, users exclude each other from individual records or entire
relations. This means that read transactions must wait for update
transactions to complete, even when the updates are not changing the
records the reader wants.

Multiple-Database Access |

Another major feature of InterBase is its ability to access more than GDIL

one database in a single transaction, whether the databases are on
your node or elsewhere on the network.

InterBase automatically uses a two-phase commit when a transaction
involves multiple databases:

e The first phase of the commit checks all participating databases
to see if anything stands in the way of committing the
transaction.

If any database reports a failure or fails to report success during
the first phase, all other subtransactions roll back.

e When all participating databases check in, InterBase issues the
second phase of the commit, which causes all participating

databases to commit.

The two-phase commit and two-phase rollback guarantee your data is
always consistent, no matter where it resides.

Other Transaction Features
The InterBase transaction environment also gives you the ability to:

e Use multiple transactions in a single database.

e Use default transaction options.

Developing Applications 4-3

GDML

SaL

Retrieving Data

o Override the default options.

Using Multiple Transactions: When you use multiple transactions,
you can group statements into autonomous units and commit or roll
them back individually. You can update related records with the
certainty that all changes are made simultaneously.

Using Default Transaction Options: InterBase provides default
transaction options that are useful for a variety of applications.

Overriding the Default Options: If your program requires additional
control over transactions, you can override the default options. You can
override these options for individual transactions and for specific
relations within a transaction. You can also start a transaction
explicitly.

Retrieving Data

You retrieve data from an InterBase database by using either a GDML
for loop or an SQL select statement.

Using these statements, you can specify:
¢ The fields you want to retrieve from the database
¢ Whether you want only unique values to be returne’d
¢ The source relations for the records
o The selection criteria for the records
¢ The order in which the data will be returned

Using an SQL Select Statement

The select statement establishes an input record stream by placing all
qualifying rows in a temporary table called a results table.

4-4 Developing Applications

Retrieving Data

There are two versions of the select statement:

o Ifthe search condition you specify returns no more than a single
record, you can use the simple version of the select statement.

¢ If you expect the search condition to return multiple rows, you
must use a cursor with the select statement. A cursor is a device
that points to rows in the results table. Using a cursor results in
a more complex query, because you must open the cursor, fetch
each record into corresponding host variables, and close the
cursor.

The distinction between single-row and multiple-row selects applies
only to embedded SQL and dynamic SQL. In gli, you retrieve multiple
rows by using a simple select.

Using a GDML For Loop

Like the SQL select statement, the GDML for loop establishes an
input record stream that represents the data you requested. Unlike the
select statement, the for loop returns records one at a time, without
using a cursor.

Within the body of the for loop, you can include host language
statements to manipulate or to print field values, and GDML
statement to access blobs or arrays.

The for loop stops automatically after the last record has been
retrieved. If the loop encounters an error, InterBase returns a complete
error message and stops processing.

To print information on rivers that are shorter than 50 miles using SQL
embedded SQL in a C program, type:

exec sqgl
declare small_rivers cursor for
select river, source, outflow,
length
from rivers where length < 50;

exec sqgl
open small_rivers;

Developing Applications 4-5

SQL
GDML

Storing Data

exec sgl
fetch small_rivers
into :river, :source, :outflow
:length;

while (!SQLCODE)
{
printf (“%s %s %s %d\n”, river,
source, outflow, length);
exec sqgl
fetch small_rivers
into :river, :source, :outflow,
:length;

if (SQLCODE != 100)
gds_Sprint_status (gds_S$status);

exec sqgl
close small rivers;

To print the same information using embedded GDML in a C program,
type:

for r in rivers
with length < 50

printf (“%s %s %s %d\n”, r.river,
r.source, r.outflow, r.length);
end_for;

Storing Data

You store data in an InterBase database by using either an SQL insert
statement or a GDML store statement.

4-6 Developing Applications

Storing Data

Using an SQL Insert statement saL

The source of values for the SQL insert statement can be any
combination of the following:

¢ Quoted literal expressions

e Numeric expressions

¢ Prompting expressions (qli only)
¢ Qli variables (qli only)

¢ Host variables

¢ Field values from a subquery

Using a GDML Store Statement

The source of values for the GDML store statement can be any
combination of the following:

¢ Quoted literal expressions
¢ Numeric expressions
¢ Prompting expressions (qli only)
o Qli variables (qli only)
¢ Host variables
¢ Field values from other records
You can also store blob and date fields by using special routines.

To insert a new record into the RIVERS relation using embedded SQL
in a C program, type:

exec sqgl
insert into rivers

Developing Applications 4-7

Modifying Data

(river, source, outflow, length)
values (‘'Unkety Brook’, ‘MA’, -
‘Nashua River’, 13);

if (SQLCODE)

{

printf (“SQL error, code %d\n”, SQLCODE) ;
gds_Sprint_status (SQLCODE) ;

}
GDML To insert the same record using embedded GDML in a C program, type:

store r in rivers using

strcpy (r.river, “Unkety Brook”);
strcpy (r.source, “MA");

strcpy (r.outflow, “Nashua River”);
r.length = 13;

end_store;

Modifying Data

GDIIL You modify data in an InterBase database by using either an SQL

update statement or a GDML modify statement.

saL) Using the SQL Update Statement

The source of values for the SQL update statement can be any
combination of the following:

¢ Quoted literal expressions

e Numeric expressions

¢ Qli variables (qli only)

o Prompting expressions (qli only)
o Host variables

¢ Field values from a subquery

4-8 Developing Applications

Modifying Data

Using the GDML Modify Statement
The GDML modify statement can be used:

¢ Alone, for a mass update

e Within a for loop

o Interactively

The source of values for the modify statement can be any combination
of the following:

¢ Quoted literal expressions

¢ Numeric expressions

¢ Prompting expressions (gli only)
¢ Qli variables (qli only)

¢ Host variables

¢ Field values from other records

To modify the LENGTH field for the Jeffreys Creek river using SQL
embedded SQL, type:
exec sgl
update rivers set length = 13
where name = ‘Jeffreys Creek’;
if (SQLCODE)

printf (”SQLCODE = %d\n”, SQLCODE) ;

Note

InterBase supports double or single quotation
marks (using the apostrophe key).

Developing Applications 4-9

SQL

Modifying Data

To modify this field using embedded GDML, type:

for r in rivers
with r.name = ‘Jeffreys Creek’
modify r using
r.length = 13;
end_modify;
end_for;

To selectively modify the OUTFLOW field for rivers whose sources are
in New Hampshire using embedded SQL, type:

exec sgl
declare r cursor for select river
from rivers where source = ‘NH’

for update of outflow;

exec sql
open r;

exec sqgl
fetch r into :river;

while (!SQLCODE)

{

printf (“New outflow for %s, “, river)’
gets (outflow);

exec sgl
update rivers set outflow = outflow
where current of r;

if (SQLCODE)
break;

exec sgl
fetch r into :river;

}

1f (SQLCODE !=100)
gds_Sprint_status (gds_Sstatus);

4-10 Developing Applications

Erasing Data

exec sqgl
close r;
To modify this field using embedded GDML, type: GDML
for r in rivers with r.source = ‘NH’
printf (‘New length for
%s: ", r.river);

modify r using
gets (r.length);

end_modify;

end_for;
Erasing Data
You erase data from an InterBase database by using either an SQL GDML
delete statement or a GDML erase statement.
Using the SQL Delete Statement saL
You can perform a mass delete both through the qli variant of SQL and
through embedded SQL. You can perform a selective delete through
embedded SQL.
Using the GDML Erase Statement

You can perform a mass delete both through the qli variant of GDML
and through embedded GDML. You can also perform a selective delete
through both variants of GDML.

To delete all rivers that originate in New Hampshire using embedded (SQL
SQL, type:
exec sqgl

delete from rivers
where source = ‘NH’;

Developing Applications 4-11

SQL

Erasing Data

To do the same delete using embedded GDML, type:

for r in rivers with r.source = ’‘NH’
erase r;
end_for;

To selectively delete the rivers that originate in New Hampshire using
embedded SQL, type:

exec sgl
declare r cursor for select river
from rivers where source = ‘NH’;

exec sl
open r;

exec sqgl
fetch r into :river;

while (!SQLCODE)
{
printf (“Enter \’'Y\’ to delete the
%s:”, r.river);
gets (response);
if (!strcmp (response, “Y”))
exec sgl
delete from rivers
where current of r;
if (SQLCODE)
break;
exec sgl
fetch r into :river;

if (SQLCODE != 100)
gds_Sprint_status (gds_S$status);

exec sqgl
close r;

4-12 Developing Applications

Preprocessing Programs

To do the same delete using embedded GDML, type: GDML
for r in rivers with r.source = ‘NH’
printf (“Enter \'Y\’ to delete the
%$s: ", r.river);

gets (response);
if (!strcmp (response, “Y”"))

erase r;
end_for;
Preprocessing Programs

Gpre is the InterBase preprocessor that translates SQL, DSQL, and GDVIL

GDML statements into statements the host language compiler accepts.
Gpre does this by generating InterBase library function calls.

Gpre also translates SQL, GDML, and DSQL database variables into
variables the host language compiler accepts. Gpre then declares these
variables in host language format.

The following commands preprocess a GDML program written in C for {e[ol®
input into the C compiler:

Operating System Sample Command

Apollo % gpre -C -e my_program
UNIX % gpre -C -e my_program
VMS % gpre /c /e my_program

Developing Applications 4-13

SQL

Where To Go From Here

Where To Go From Here

For more information on developing applications using the SQL
Interface, use the table below to direct you to the appropriate book in
the InterBase documentation set:

To learn Refer to the chapter on In the
more about
Transactions The InterBase transaction Programmer’s Guide

environment

Understanding transactions

Qli Guide

Retrieving data

Retrieving data with SQL

Programmer’s Guide

Accessing data using SQL

Qli Guide

Storing data

Introductory information DSQL Programmer’s
Guide

Writing data with SQL Programmer’s Guide

Writing data Qli Guide

Introductory information

DSQL Programmer’s
Guide

Modifying data

Writing data with SQL

Programmer’s Guide

Writing data

Qli Guide

Introductory information

DSQL Programmer’s
Guide

Erasing data

Writing data with SQL

Programmer’s Guide

Writing data

Qli Guide

Introductory information

DSQL Programmer’s
Guide

Preprocessing

Preprocessing your
program

Programmer’s Guide

4-14

Developing Applications

For more information on developing applications using the GDML

Where To Go From Here

Interface, use the table below to direct you to the appropriate book in
the InterBase documentation set:

To learn more Refer to the chapter on | In the
about
Transactions The InterBase transaction | Programmer’s
environment Guide
Understanding Qli Guide
transactions
Retrieving data Retrieving data with Programmer’s
GDML Guide
Accessing data using Qli Guide
GDML
Storing data Writing data with GDML Programmer’s
Guide
Writing data Qli Guide
Modifying data Writing data with GDML Programmer’s
Guide
Writing data Qli Guide
Erasing data Writing data with GDML Programmer’s
Guide
Writing data Qli Guide
Preprocessing Preprocessing your Programmer’s
program Guide

Developing Applications

4-15

Advanced Features

Overview

OLCP applications go beyond the capabilities of conventional
relational database management systems. Requirements for such
things as digitized voice, multi-dimensional arrays and instantaneous
event notification make applications difficult —if not impossible—to
program, particularly in a network environment. InterBase offers some
unique solutions:

¢ Casting, to convert data from one type to another

e Subqueries, to build complex requests

¢ Recursive queries, to join a relation to itself

e User-defined functions, to do conversions or calculations from
any program

¢ Blobs and blob subtypes, for storing unformatted data
¢ Blob filters, to convert data from one subtype to another

o Arrays, to store large amounts of related data elements in a
single record field

Advanced Features 5-1

Casting

o Triggers, to execute specific actions when a record is stored,
modified, or erased

e Event Alerters, to detect and report changes in a database to
users anywhere in the network

Casting

Casting converts data from one type to another. For example, you can
convert floating point data to string, string to integer, date to strings.
To use InterBase’s casting capability, you append a casting datatype
name to the database field you want to convert.

For example, to cast a date field, you qualify a field that holds time or
date information by appending .char[n] to the field name.

Example
The following statement assigns today’s date to a field:

s.statehood.char[6] == ‘TODAY’;

Subqueries

Some queries are unnatural or impossible to express as joins. For
example, in the atlas database, you cannot get a list of states with a
smaller than average area by joining states to itself. You can easily get
that list with a subquery. A subquery is a query within another query.
The outer query is evaluated first. The subquery operates on the outer
query’s results.

You can use subqueries to build complex requests. For example, nested

for loops in GDML can produce outer joins or combine relations from
different databases.

5-2 Advanced Features

Recursive Queries

Example

The following example uses a nested for loop to list all states, and then {8
the baseball teams for states that have them:

QLI> for s in states sorted by s.state

CON> begin

CON> print s.state_name

CON> for b in baseball_teams over
CON> state sorted by b.team_name

CON> print b.team_name, b.city,
CON> Db.home_stadium
CON> end

Recursive Queries

A recursive query joins a relation to itself to establish a hierarchy.
Using the GDML request options, you can specify the level of a
request, or instantiation, so you can execute a parts explosion or bill-of-
materials. Increasing or decreasing the level moves you up or down the
instantiation tree, thus moving up or down the bill-of-materials.

Note

If you use SQL statements in a GDML program, you
cannot use them with a request instantiation. SQL
does not support request levels.

User-Defined Functions

A user-defined function (UDF) is an executable routine you define and
add to InterBase to do conversions or calculations from any program.

For example, you can create a function that changes a temperature
value from Fahrenheit to Celsius. Or you can create a function that
calculates compound interest.

You can use UDFs to:

e Select records

Advanced Features 5-3

User-Defined Functions

¢ Create computed fields

e Validate data

You can also use user-defined functions in triggers.

Advantages of User-Defined Functions

InterBase’s UDFs are managed by the database. In other database
systems, each application needs its own copy of the function modules,
possibly coded differently for differing operating environments. With
InterBase, all UDF's are accessible to all applications. This eliminates
the need for multiple copies of the same function module. Additionally,
you can write the code for the platform on which the data resides.

You have the security of knowing that all programs in your application
are using the same function and that when your business requirements

change, you can upgrade the function in one place.

The figure below shows applications sharing the UDFs you define for
your database.

Application 1

Application 2

Application 3

Defining User-Defined Functions

Creating a user-defined function involves:

¢ Defining the function’s location and parameters to the database
by using gdef.

e Writing the function, creating the function library, and accessing
the function.

5-4 Advanced Features

Blobs

Example

An example of a function definition is presented below. To define a GDML
function called ABS by using gdef, type:

GDEF> define function ABS

CON> module_name ‘FUNCLIB’

CON> entry_point ‘FN_ABS’

CON> double by wvalue,

CON> double by value return_value;

Programming with User-Defined Functions
To program with user-defined functions:
1. Write the function and compile it into object code.

2. Define the function’s location and parameters to the database
with gdef.

3. Create the function library and make it available to InterBase
at run time.

Blobs

The basic large object or blob datatype is available with InterBase and
other DSRI-compatible software. A blob looks like a stream or
sequential file, but behaves much like a field in a relation. They are
stored as a whole and are accessed in discrete chunks called segments.

Blobs are best suited for the storage of:

¢ Unformatted data, such as:
- Text '
- Images
- Digitized data
- CAD drawings

Advanced Features 5-5

Blobs

¢ Any other entity that does not lend itself to storage as longwords
or strings.

Blob Subtypes

When you define a blob, you can specify a subtype that describes the
blob data. There are two categories of subtypes you can use:

¢ Predefined subtypes that InterBase uses internally
e Subtypes that you define as needed

You use blob subtypes with blob filters in storing and retrieving blob
data.

Advantages of Blobs

The blob datatype provides unstructured data with all of the
advantages of a database management system, including:

¢ Full transaction control
e Maintenance by the same utilities as more structured data
e Manipulation with high-level user interfaces
With blobs, you can keep unstructured entities right in your database.

You do not have to store pointers to non-database files, nor do you have
to make sure the database and its attendant files remain synchronized.

Programming with Blobs
GDML supports several ways of accessing blob data. You can use:
e For loops for reading blobs.

e Statements similar to those used for file processing for both
reading and writing blobs.

e A library of routines supporting blob and/or file interchange and
stream-like processing.

5-6 Advanced Features

Blob Filters

e Call interface routines.

¢ Blob filters.

Blob Filters

A blob filter is a program that converts data stored in blob fields from
one blob subtype to another subtype. A blob filter is stored with the
database, so it becomes part of a database rather than a piece of each
application’s code.

For example, in a database of employee information, you might have a
blob field that stores each performance review. To keep this information
confidential you might store the review in encrypted form. You can then
create blob filters to encrypt the review upon storage, and to decrypt
upon retrieval.

Advantages of Blob Filters

Blob filters reduce application code since all filters are available to all
applications. Additionally, they are kept in a central location (the
database) so they are associated with a database rather than an
application.

The figure below shows how a blob filter can convert data to a format
appropriate to a particular platform.

Blob
Subtype1

Filter

Blob
* Subtype 2

==

Advanced Features 5-7

Blob Filters

Defining Blob Filters

A blob filter is a program that converts data stored in blob fields from
one blob subtype to another subtype.

For example, suppose you have a blob field containing text stored in the
nroff markup language, and you want that text displayed in its
formatted form. You can create a blob filter that automatically formats
the marked up text whenever the blob field is retrieved.

Creating a blob filter involves:

¢ Defining the filter’s location and parameters to the database by
using gdef.

e Writing the filter, creating a filter library, and accessing the filter.
An example of defining a blob filter is presented below.
Example
To define a blob filter called NROFF, type:
CDEF> define filter nroff_test_filter
CON> input_type -1
CON> output_type 1

CON> module_name ‘FILTERLIB’
CON> entry_point ‘NROFF_FILTER’;

Programming with Blob Filters

To program with blob filters:
1. Write the filter program in a host language and compile it.
2. Define the filter’s location and parameters with gdef.

3. Build a shared filter library and make it available to InterBase
at run time.

4. Write a program that requests blob filtering.

5-8 Advanced Features

Arrays

Arrays

An array is a multi-dimensional data structure that holds data
elements of the same type in subdivisions called cells.

You use an array when:
* The data elements naturally form an ordered set (or sequence)
¢ You want to control the set as a single field

¢ You want to be able to identify and access each element of the set
individually

A two-dimensional array named sample is shown below.

Subscripts / Lower bound / Upper bound
1 2 3 4
Base— 1
2 ,/—Ce"
3
4
5

Textbook Approach: Suppose you have an application that accepts
GDML

fifteen input readings from ten machines five times a second. Standard
relational theory produces a normalized record like the one shown
below:

Time Machine Reading Value
10:10:05.1 623 Temp1 135

10:10:05.1 624 Temp2 136
10:10:05.1 623 Temp3 102
U U U U

Advanced Features 5-9

GDML

Arrays

This application stores 750 forty or fifty byte records per second. After
24 hours, you have 64,800,000 records, totalling over 3 billion bytes of
data.

Standard Work-Around: An alternative is to store all the data for a
single reading of a single machine in one record:

Time Machine Temp1l Temp2 Temp3 =
10:10:05.1 623 135 102 157
10:10:05.1 624 136 98 175

This application reduces the amount of data by storing ten 72 byte
records per second or 4,320,000 records per day. However, each reading
goes in a different field, causing long insert or store statements.

Additionally, analyzing the data is complicated because most
programming languages are designed to manipulate arrays rather
than records of numbers.

Array Solution: The best solution for this applications is to use an
array. In this example an array would capture one record per second.
Each record consists of a time field and a three-dimensional array:

e One dimension represents the five readings per second within a
reading

¢ A second dimension represents the machines

e A third dimension represents the fifteen readings
Not only does using an array compress 750 records into one, it also
makes it easier to store and analyze data with a 3GL. For example, if
you have a record whose values are out of bounds according to your

criteria, the programming language interfaces allow you to retrieve
that specific value.

5-10 Advanced Features

Triggers

- -
- L—1
- — 1
L
L1
- L1
@ 1
5 L1
: =
2 | —
15 Temperature Readings
Advantages of Arrays

With InterBase arrays you do not have to store array data in multiple
two-dimensional records. Since InterBase arrays are multi-
dimensional, you can store arrays as a whole in a single field. Accessing
and retrieving data in arrays is then fast and simple.

Programming with Arrays
To access an array, you can refer to it from:
o A GDML record selection expression.

¢ Host language statements within a for, modify, or store loop.

Triggers

A trigger is a piece of code that executes a specific action when a record
in a relation is stored, modified, or erased. Because triggers can access
other relations, they can provide both referential integrity and

application integrity. ,

You define triggers by using gdef.
You can use triggers to provide data integrity, post events, and

maintain an audit log. Triggers are automatically executed, regardless
of the interface through which you store, modify, or erase the associated

Advanced Features 5-11

Event Alerters

records. Therefore, you can be assured that any integrity you intend to
protect will not be bypassed by any user or program.

Example

To define a trigger that lets you store a new TOURISM record only if
the record contains a valid state, type:

GDEF> define trigger store_tourism
CON> for cities

CON> pre store 0:

CON> begin

CON> if not any s in states with

CON> s.state = new.state

CON> abort 1;

CON> end;

CON> message 1l:”State name is invalid.”
CON> end_trigger;

Event Alerters

An event alerter is a mechanism for detecting and reporting changes in
a database. They are designed to aid application developers in getting
the right information to the right person when it’s needed. Essentially,
an event alerter is a signal the database sends to notify interested
applications when a specific event has taken place.

Event alerters are useful anywhere you want a quick response to new
information without wasting computer or network resources by polling
see if a change has occurred. Once notified of an event, your program
can respond to the information and initiate a task that the database
cannot perform, such as running or controlling an external process.

An event can be any type of database insertion, deletion, or
modification. For example, you can define an event that notifies all
interested programs when an account is overdrawn.

You could use events in stock trading to notify traders when the price
of a certain stock changes more than a specified amount. Or you could
use events for process control, causing an alarm to sound when
temperature fluctuates above or below a specific setting.

5-12 Advanced Features

Event Alerters

Polling for Database Change InterBase Event Alerters

S — ™
Application | "* | Database Application Database

Response) Response)

A

There are two types of notification with events. An interested process
can receive:

¢ Synchronous notification, so the process sleeps until an event
occurs.

¢ Asynchronous notification, so the process continues running.
Advantages of Event Alerters
Event alerters:

¢ Reduce the overhead and network traffic that polling can cause

¢ Provide more real-time information than periodic polling

¢ Provide timely notification of significant changes to interested
users in a heterogenous environment

¢ Do not miss intermittent events

¢ Reduce application code maintenance, because the same events
are usable by multiple applications

Defining Event Alerters
Creating an event alerter mechanism involves:

¢ Defining an event in the database. You define an event by
creating a trigger with gdef.

¢ Creating a program to wait for an event.

Advanced Features 5-13

Event Alerters

Example

GDML To define an event that notifies interested programs when an account
is overdrawn, type:

GDEF> define trigger store_debit

CON> for accounts

CON> post store 0:

CON> 1if total d.amount of d in debits >
CON> total c.amount of ¢ in credits
CON> then post overdrawn;

CON> end_trigger;

Programming with Event Alerters
To program event alerters:
e Define a special trigger that posts an event notification.

e Create a program that registers interest in an event and
requests either synchronous or asynchronous notification.

5-14 Advanced Features

Where to Go From Here

Where to Go From Here

For more information on advanced features, use the table below to
direct you to the appropriate book in the InterBase documentation set.

To learn Refer to the chapter on In the

more about

Arrays Using Arrays Programmer’s Guide
Blobs Using blob fields Programmer’s Guide
Blob filters Using blob filters Programmer’s Guide
Casting Retrieving data with GDML | Programmer’s Guide
Event alerters | Programming with events Programmer’s Guide
Recursive Accessing data in Qli Qli Guide

Queries

Retrieving data with GDML | Programmer’s Guide

Subqueries Accessing data in Qli Qli Guide

Retrieving data with GDML | Programmer’s Guide
User-defined Creating user-defined Data Definition Guide
functions

Advanced Features 5-15

5-16

Finishing Touches

Overview

A successful database application depends on the effective collection
and retrieval of data. To simply these processes, InterBase provides
forms for collecting and displaying data, and reports for formatting the
output of database queries.

Forms

InterBase forms are screen images you use for collecting and displaying
data. You use forms with:

¢ An interactive editor, fred, that provides menu support for
building forms

¢ GDML statements for incorporating and manipulating forms
and menus in GDML applications

¢ Qli statements for manipulating predefined forms and for using
default forms

Finishing Touches 6-1

Forms

The following form shows the SKI_AREAS relation:

NAME Birchwood Acres
TYPE N

CITY Groton

STATE MA

<ENTER> or <R15> to continue, <R1> to stop

The InterBase forms editor, fred, provides an interactive way to define
forms.

Fred:

e Uses menus that let you generate a new form or revise an
existing form.

e Automatically generates forms from a single menu choice.
o Edits forms to your application’s requirements, letting you add
fields to a form, move field labels and data input areas at will,

and change the appearance of labels and input areas.

¢ Generates forms that reference multiple relations by choosing
fields from another relation to include in the form.

e Stores forms in the same database as the relations it references

and automatically stores the form in the database (or discards it
if you want).

6-2 Finishing Touches

Forms

When you invoke fred it displays a menu listing the top level options:

Pick one, please
EDIT FORM
CREATE FORM
DELETE FORM
COMMIT
ROLLBACK

Exit Form Editor

e EDIT FORM lets you edit an existing form. You can add or delete
fields, reformat the form, and even save it as a new form.

e CREATE FORM lets you create a new form based on an existing
relation.

¢ DELETE FORM pops up a menu listing all of the forms in the
current database. Select the name of the form you want to delete
using the cursor keys, and press Enter. The form is deleted from
the database.

o COMMIT writes all operations since the last commit or rollback
to the database.

e ROLLBACK lets you undo changes to the database if you have
not yet committed them.

Finishing Touches 6-3

Report Writer

Report Writer

InterBase’s report writer allows you to format the output of database
queries into a paper or screen report.

To create a report in gli, you

¢ Issue a report command

e Provide a record selection expression

¢ Provide a print list

Example

relation:

The following simple report displays all records in the SKI_AREAS

QLI> report ski_areas sorted by state

CON>
CON> end_report

Carlisle

Groton

Waterville Valley
New Ipswich

Mt . Washington
Dixville Notch
Stowe

Stowe

Stowe

print city, state, name
STATE NAME

MA Great Farm

MA Birchwood Acres
NH Waterville Valley
NH Windblown

NH Bretton Woods

NH Wilderness

VT Epson Hills

vT Mt. Mansfield

VT Trapp Family Lodge

The report writer has numerous options you can use to create complex
reports. For example, a few of the elements you can control are:

6-4

e The length and width of the page

e A header at the beginning of the report

Finishing Touches

Report Writer

¢ A header and footer on every page

e Control groups (for example, cities by state)

o Aggregate values for control groups

Example

The following example shows a complex report. It uses many of the GDML
report command’s options, including a report header, aggregate
values, and page footers:

QLI>report states cross rivers -
CON>with state = source -

CON>sorted by state_name

CON>set report_name = "River Sources"
CON>at top of state_name print state_name
CON>at bottom of state_name print area,
CON>count, total length ("Total"/"Length")
CON>at bottom of page print skip 2,
CON>col 0,

CON>"Printed " | format "now" using
CON>w (9)bddbmmby (4) " at "tt:tt:ttbpp
CON>end_report

Finishing Touches 6-5

Options and Interfaces

Control break (Report Name) (Aggregate) Control break)
and title and title
River Sources
STATE TOTAL
NAME__ AREA COUNT LENGTH_
Alaska 586400 6 3528
Arkansas 53102 1 720
California 158693 2 727)
Colorado 104247 7 7192 -
Georgia 58876 4 2431 :
M
A
Printed Thursday 19 Apr| 1990 at 1:09:06 PM

\ B
lCqumnO' (_ 2blankiines) (" Current date & time)

Options and Interfaces

Your application can be customized further through the use of various
optional modules and interfaces that work with InterBase. The options
are:

¢ Pictor

e Contessa

e Third-party Interfaces
Pictor

InterBase’s point-and-click query tool, Pictor, allows workstation users
to navigate around a database without the use of a DML. Using screen
buttons and menus, users can select, print, change, and add data to
existing databases.

6-6 Finishing Touches

Options and Interfaces

Pictor is particularly useful in making off-the-cuff queries against
unfamiliar databases. The database structure is visible on-screen,
making it easy to determine what data is of interest. Pop-up menus,
subwindows, and dialog boxes guide the user through the process of
creating complex queries without requiring knowledge of any database
language.

Infrequent users of InterBase will value the efficiency that Pictor gives.

Contessa
Contessa for InterBase is a full-featured application development
environment that allows novice users as well as seasoned programmers
to create sophisticated applications quickly and easily.
The Contessa environment provides a set of tools with which, by
pointing and clicking with the mouse, graphical objects (lines, buttons,
text fields, etc.) may be added to a graphical blackboard until a working
interface is generated. Application objects can have executable
“scripts” associated with them.
Contessa’s tools are ideal for a broad range of applications such as:

¢ Rapid prototyping

¢ Data monitoring

e Customer services

¢ Financial modeling

¢ Diagnostics

¢ Process control

Third-Party Interfaces

InterBase works with a variety of commercial software products,
including:

¢ Fourth-generation languages

Finishing Touches 6-7

Options and Interfaces

o Application development environments
¢ Graphical display packages

e Statistical packages

o Industry-specific software

For full details on the list of InterBase software partners, contact an
InterBase sales representative.

6-8 ’ Finishing Touches

Where to Go From Here

Where to Go From Here

For more information on the features discussed in this chapter, use the
table below to direct you to the appropriate book in the InterBase

documentation set.

To learn more about Refer to the
Forms Forms Guide
Qli Guide
Fred Forms Guide
Qli Guide
Writing Reports Qli Guide

Finishing Touches

6-9

6-10

Database Administration

Overview

InterBase provides several system utilities that make database
administration and operations easy. Unlike other relational databases,
InterBase does not require a traditional database administrator.
Database administration and operations can be done by any individual
who is familiar with InterBase.

In addition to supplying database administration utilities, InterBase
also provides recovery mechanisms to help you recover from human
disasters and system failures.

System Utilities

InterBase provides the following system utilities for performing
database administration and operations:

e Gbak, the backup and restore utility
o Gfix, the database maintenance utility
¢ Gcesu, the central server management utility

o GIltj, the journal server utility

Database Administration 7-1

Recovery Tools

¢ Gcon, the console program used in communicating with the
journal server

¢ Grst, the journal file restoration utility

Recovery Tools

InterBase provides recovery mechanisms that help you recover from a
human disaster or a system failure. The recovery mechanisms are:

¢ Automatic recovery
o After-image journaling
¢ Disk shadowing

Routine system failures are generally handled without human
intervention by the automatic recovery feature. More severe failures or
user errors call for journaling or shadowing.

Automatic Recovery

InterBase’s multi-generational record architecture ensures that the
database is always available in an internally consistent state—even
after a system crash. If the node supporting the database is brought up
again after a power failure, for instance, the database can be opened
immediately and processing resumed.

The database effectively returns to the state following the last
committed transaction. Transactions left incomplete at the time of the
crash are disregarded, and their associated generational records are
marked for deletion.

Because it is a natural product of InterBase’s architecture, automatic
recovery is always available.

After-Image Journaling

After-image journaling is particularly useful when a program or user
corrupts the database. Journaling allows you to return the database to
any previous intact state. For example, if a user accidentally deleted all

7-2 Database Administration

Recovery Tools

customer records and committed the transaction, journaling would
allow you to return the database to the state just before the accident.
Journaling also allows for the recovery of data in the event the original
database file becomes unreadable.

Once you enable journaling, changes to the database are automatically
recorded in a journal file. InterBase supports journaling on Apollo,
UNIX, and VMS systems.

As a recovery mechanism, journaling offers the following advantages:
¢ Provides recovery from user or media errors.

¢ Allows you to select the precise previous state to which the
database should be returned.

Journaling is an optional part of InterBase. It must be activated before
it protects your database.

Disk Shadowing

In the event that the disk or cpu serving a database becomes unusable,
you may recover from a disk shadow. A disk shadow is a physical copy
of a database stored in the same format as a database. Once enabled, a
disk shadow maintains a duplicate, in-sync copy of the database it is
shadowing, on another network node. Disk shadowing is supported on
Apollo, UNIX and VMS systems.

As a recovery mechanism, disk shadowing offers the following
advantages:

e Minimal impact on performance
e Quick recovery
o Predictable disk usage, identical to that of the original database

Disk shadowing is optional. It must be activated before it protects your
database.

Database Administration 7-3

Where to Go From Here

Where to Go From Here

For more information on InterBase utilities and recovery mechanisms,
use the table below to direct you to the appropriate book in the
InterBase documentation set.

To learn more Refer to the In the

about chapter on

Using gbak Backup and Database Operations
Recovery

Gbak syntax Reference Database Operations
information

Using gfix Database Database Operations
Maintenance

Gfix syntax Reference Database Operations
information

Automatic recovery | Database Database Operations

Maintenance

Journaling

Journaling

Database Operations

Disk shadowing

Disk Shadowing

Database Operations

7-4

Database Administration

Supported Systems

InterBase supports the following platforms:
e DEC
e HP/Apollo
« HP
¢ Sun
¢ IBM
e Motorola
e Silicon Graphics
e Data General
* SCO
The following tables list the machines, operating system,

communication protocols, and languages for each of the supported
platforms.

A-1

HP/Apollo Platforms

Platforms
¢ DN3XXX
e DN4XXX
e DN10000
e HP 9000/400
Operating systems
e SR10.2+

Communication protocols
¢ Apollo MBX
o TCP/IP

Languages DN3XXX,DN4XXX,
HP 9000/400

e Ada

e C

e FORTRAN

¢ Pascal

o C++
Languages DN10000

e C

e Pascal

¢ FORTRAN

e Ada

A-2

DEC Platforms

Platforms

¢ DECstation

e VAXstation
Operating systems

e VAX/VMS 5.0+

e Ultrix 4.2

s VAX/ULTRIX 3.1

e VAX/VMS V5.3-5
Communication protocols

e DECnet

o TCP/IP
Languages (VMS)

o Ada

e Basic

o C

« COBOL

o FORTRAN

o Pascal

s PL/1
Languages (Ultrix)

o C

A-3

HP Platforms

A4

Platforms

e 9000 Series 300

e 9000 series 400

e 9000 Series 600

e 9000 Series 800

¢ 9000/700
Operating Systems

e HP-UX 7.3

¢ HP-UX 8.0.5
Communication protocols

e TCP/IP
Languages 9000/300, 400

o C

o C++

e FORTRAN
Languages 9000/600, 800, 700

o C

¢ FORTRAN

Sun Platforms

Platforms

e Sun-3

e Sun-4

¢ SPARCstation

e Sun MPs
Operating Systems

e Sun0S 4.1

e SunO0S 4.1.1
Communication protocols

o TCP/IP
Languages

e Ada

e C

o C++

e FORTRAN

A-5

Santa Cruz Operation Platforms

Platforms

SCO e 386compatible
e 486compatible

— — Operating Systems

\ \
e SCO UNIX 3.2.2

[INEENNSNNEEEEE NN NN RREY]

Communication protocols
o TCP/IP

Languages
e C

A-6

Data General AViiON Platforms

| Platforms
DG e Data General AViiON
L J | Operating Systems

e e DG-UX 5.4

LI'ITTTN TTTTTTITIITTIIIT TITWT]J

Communication protocols
o TCP/IP
Languages
e C
o C++
e FORTRAN

IBM Platforms

IBM

=
=

A-8

1
[INNESENGENNSRNENENERRREEEASE)

Platforms

¢ 386 Compatible

* RS/6000
Operating Systems

e SCOUNIX 3.2.2

e AIX 3.1
Communication protocols

o TCP/IP
Languages

e C

Motorola Platforms

()

)

Platforms
¢ Motorola IMP
e Motorola Delta
Operating Systems
¢ UNIPLUS+ V3.1
Communication protocols
o TCP/TP
Languages
o C

A-9

Silicon Graphics Platforms

]
i
|

[IEEEESENEESNIENEEEEEEEEERNEE]

A-10

Platforms
e Silicon Graphics
Operating Systems
o IRIX 3.3
Communication protocols
+ TCP/IP
Languages
e C
e FORTRAN

Specifications

General
Relational DBMS
ANSI Level IT SQL
Multi-user
Transaction-based
Forms interface
Active data dictionary
Views and virtual fields
Automatic data validation and triggers
On-line restructuring
Multiple databases per transaction
Distributed read-write access
DSRI/OSRI compatibility

Operations
Relational restrict, project, join, union
Global and scalar aggregates
Compare, string search, and existential operators
Nested and recursive requests
Storage and retrieval of very large objects
Event alerters notify distributed applications of database changes

Concurrency Control
Multi-user, concurrent update

B-1

Atomic transactions
Two compatible levels of concurrency:
Serializable
High concurrency
Automatic two-phase commit and rollback
Multiple database transactions
Multiple parallel transactions per process

Availability
High multi-user throughput
No performance degradation during:
Online backup
Online metadata changes
Rollback recovery
Instant system availability after hardware crash

Database Recovery

Automatic cooperative rollback
After-image journaling

Validate and repair utility

“Careful write” with precedence list
Shadowing

Datatypes
Short and long integer with decimal scale
Single and double precision floating
Fixed, null-terminated, and varying strings
Maximum string length 32Kb
Dates (100 AD to 5941 AD)
Blobs (arbitrarily large, semi-structured objects)
Multi-dimensional arrays
Null or missing values

Integrity
Unique key
Dictionary-based data validation criteria
Triggers enforce integrity and business rules
Cannot be bypassed

B-2

May cause other triggers to activate (cascade)

Multiple triggers per database action controlled independently

User-specified firing sequence
Pre- and post-action specification
Consistent behavior under transaction control

Security

Secure fields, relations, views, and databases
By security class, user, group, or view

Dictionary
Active data dictionary
Metadata updates concurrent with other transactions
Dictionary manages:
User-defined functions
Trigger procedures
Blob filters (translation code)

Interfaces
Host language preprocessor
Interactive application language
Forms
Icon-based interactive query and update (Pictor: add-on module)

Architecture-independent, message-based low-level interface for
VAR and third-party system development

Host Language Preprocessor
C, FORTRAN, Pascal, COBOL, BASIC, PL/I, and Ada
ANSI Level II SQL and DEC Rdb compatibility
Intermixed SQL, GDML, and lower level calls (if needed)

Interactive 4GL
SQL and proprietary language (GDML)
Query and update
On-line hierarchical help
Automatic and programmable prompts
Nested command procedures
Automatic and programmable forms

B-3

Forms Interface

Forms editor
Embedded DML forms language
Forms in 4GL

Restructuring

On line with active transactions
Add field, relation, index, trigger
Drop field, relation, index, trigger
Change field length, datatype
Change trigger actions

Add or drop fields in relation context
Add or drop keys from index

Remote Database Access
Transparent to host program
Architecture-independent protocol
Network access between different machine architectures
Client/server, multi-threaded, multi-server (peer-to-peer)
Independent of communication system

Utilities
Data definition utility
Host language preprocessor
Interactive application language
Forms editor
Administration and operations utililities

Optimizations
B-tree indexes (single and compound key)
Arbitrary key positions in record
Index selection
Index combination (bitmap techniques)
Join order selection
Fast load index creation

B-4

Data Compression

Data run-length encoded
Prefix and tail compression in index

Specifications

Access method: ~250 KB memory

Cc:irp;l)(lete system, including utilities & examples typically 4-6 MB
is

Record size (excl. blob): 65,000 bytes

Field size (excl. blob): 32,000 bytes

Fields per record: 16,000

Index key: 255 bytes

Blob size: no limit

Records per relation: no

limit

Indexes per relation: 64

Documentation
Database Operations
Data Definition Guide
DDL Reference
DSQL Programmer’s Guide
Forms Guide
Getting Started with InterBase
Programmer’s Guide
Programmer’s Reference
Qli Guide
Qli Reference
Sample Programs
Master Index
Platform-specific installation instructions and information
Pictor User’s Guide (optional)
Access Method Reference Manual (optional)

Support and Training

One year of update support is included in the purchase price for
InterBase. Technical support staff is available via hot-line
telephone as an option.

B-5

Interbase Software provides courses at training centers on the east
and west coasts, and on-site at a customer’s location. Contact
Interbase for more information.

B-6

Language Features

This table indicates which InterBase features are supported by ANSI

Level II SQL, and which by GDML.

Feature Database Language
Defining

Databases
Relations
Local Fields
Global Fields
Computed Fields
Views
Indexes SQL
Triggers GDML
Transactions

Multi-Generational Records GDML
Consistency Mode
Concurrency Mode saL

C-1

Feature

Database Language

Data Access

Retrieving Records
Modifying Records
Erasing Records
Adding Records saL
Advanced Features

Casting
Subqueries
Recursive Queries
User-Defined Functions
Events
Blob & Blob Filters
Security saL
Arrays
Finishing Touches

Forms
Report Writer
Interface to 3GL Programs SQL

C-2

Interbase Offices

Headquarters:

Borland International Inc.
1800 Green Hills Road

P. 0. BOX 660001

Scotts Valley, CA 95067-0001
Phone: 408-438-8400

Northeast Office

209 Burlington Road
Bedford, MA 01730
Phone: 617-275-3222
FAX: 617-271-0221

Mid-Atlantic

1420 Spring Hill Road
Suites 460-470
McLean, VA 22102
Phone: 703 -448-2300
Fax: 703-448-2308

D-1

Southwest

20101 Hamilton Avenue
Torrance, CA 90502
Phone: 310-538-7458

Northwest

1611 116th Avenue NE
Suite 22

Bellevue, WA 98004
Phone: 206-646-4975
FAX: 206-646-3020

D-2

Index

A

Application development
overview 4-1
atlas.gdb database 2-5

B

Blob
overview 1-4
Blob filter
overview 1-4

C

Computed field
overview 3-4
Concurrency model
definition 4-2
Consistency model
definition 4-2
create database
SQL 3-3

D

Data
converting 5-2
erasing 4-11
modifying 4-8
retrieving 4-4
storing 4-6
Data dictionary 3-3
Data integrity
overview 1-3
Data manipulation languages 1-
8, C-1
Database
components 3-1
creating 3-3
define database
GDML 3-3
delete
SQL 4-11

E
erase 4-11,4-12
Event
alerter 1-2, 5-12
overview 1-2

F

Field
attributes 3-4
computed 3-4
defining 3-4
global 3-4
local 3-4
Forms
overview 6-1
Function
defining 5-4

G
gbak
overview 1-11
gesu
overview 1-11
gdef
overview 1-10
GDML
compared to SQL 1-8, C-1
database components defin-
able by 3-3
quotation marks 4-9
store 4-6
summary of features C-1
gfix
overview
Global field
overview 3-4
gpre
overview
grant 3-8
grst
overview

1-11

1-10

1-11

Index-1

I

Index
defining 3-7

insert
SQL 4-7

InterBase
architecture 1-5
components 1-8
optional modules 6-6
specifications B-1
utilities list 1-10

J

Journaling
overview 7-2

L
Local field 3-4

M
Metadata
overview 3-2
Modifying data
overview 4-8
Multi-database access 4-3
Multi-generational architecture
1-2,1-3, 4-2
Multiple databases
accessing 4-3

N

nested for loops 5-2
Network
using InterBase on 1-5

O
OLCP
characteristics 1-2
using InterBase utilities in
1-7
Overview of InterBase 1-1

Index-2

P

Pictor 6-6

Preprocessing programs 4-13
Prompts in QLI 2-4
Prototyping applications 2-1

Q

QLI
correcting mistakes 2-4
overview 1-11,2-1
show 3-3

Quotation marks 4-9

R

Record

definition 2-2
Recovery

automatic 7-2

overview 1-3
Recursive query 5-3
Relation

defining in DDL 3-5

joining overview 2-3
Relational database theory 2-2
Report writer

overview 6-4
Retrieving data overview 4-4

S

Sample database

accessing 2-5
Security

defining 3-8
select

SQL 44
Shadowing

overview 7-3
show

overview 3-3
SQL

compared to GDML C-1

cursor declaration 4-5 V

data deleting 4-11

database components defin-
able by 3-2

GDML comparison 1-8, C-1

grant 3-8

quotation marks 4-9

selecting data 4-4

summary of features C-1

View
overview 3-6

update 4-8
Storing data

overview 4-6
Subqueries

overview 5-2
Subtype 5-6

System relations/variables
definition 3-3
displaying 3-3

T

Transaction
concurrency model 4-2
consistency model 4-2
default options 4-4
definition 4-1
multi-generational 1-2, 1-3
multiple 4-4
overview 1-2,4-1
two-phase commit 4-3
Trigger
definition 1-3
overview 5-11
Two-phase commit 4-3

U
update
SQL 4-8
User defined function
overview 1-5,5-3
Utilities
summary 1-10, 7-1

Index-3

